Cooper pair breaking and superconducting state recovery dynamics in MgB$_2$ probed by time-resolved THz spectroscopy

1Los Alamos National Laboratory, MS K764, Los Alamos NM 87545, USA
2National Creative Research Initiative Center for Superconductivity, Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea.

*1-505-665-8839, 1-505-665-7653, jdemsar@lanl.gov

Abstract: We measured the Cooper pair breaking and condensate recovery dynamics in MgB$_2$ by means of time-resolved optical pump – terahertz probe spectroscopy. The observed photoexcitation intensity dependence of Cooper-pair breaking is attributed to the presence of two superconducting gaps in MgB$_2$.

OCIS codes: (320.7130) Ultrafast processes in condensed matter, including semiconductors, (300.6500) Spectroscopy, time-resolved

We present the first femtosecond time-resolved studies of Cooper-pair breaking and subsequent condensate recovery dynamics in newly discovered superconductor (SC) MgB$_2$ [1], using time-resolved optical pump – terahertz probe spectroscopy[2]. MgB$_2$ is found to have a rather complicated Fermi surface, consisting of quasi-2D cylindrical sheets (s band), and a 3D tubular network (p band) [3]. Due to pronounced anisotropy of the electron-phonon coupling constant several measurements of the superconducting gap suggest the presence of two distinct energy gaps $2\Delta^{\sigma_\sigma}/kT_c \sim 4-5$, $2\Delta^{\pi_\pi}/kT_c \sim 1-2$ opening below T_c on the two Fermi surfaces [4]. Since the technique has the ability to differentiate between different processes due to their different time-scales, temperature, and photoexcitation intensity (F) dependences, it presents an ideal tool to investigate the complicated low-energy electronic structure of MgB$_2$.

Fig 1: σ_i and σ_r at different time delays after photoexcitation (T=7K). Insets: the time evolution of σ_i and σ_r at $\nu= 0.8$ THz.

The experiments have been performed on 80 and 100 nm thin films ($T_c = 34$K) on sapphire, using the experimental set-up presented in [2]. Fig. 1 shows the time evolution of the real and imaginary conductivity (σ_r and σ_i) at different times after the excitation with 100 fs optical pulse with $F \sim 4 \mu$J/cm2. The rise-time dynamics corresponding to pair-breaking process is on the ps timescale, while the condensate recovery time τ_R is hundreds of ps. To study the T-dependence and F-dependence of the processes we utilize the fact that at low F change in conductivity $\Delta \sigma$ (both $\Delta \sigma_i$ and $\Delta \sigma_r$ have the same time dependence) is in a superconductor proportional to the change in the phase of the transmitted THz electric field E - see inset to Fig. 2a.
Fig. 2a) shows $\Delta \sigma(t)$ at different temperatures. τ_R is plotted in Fig. 2b). τ_R does not depend on F nor film thickness; therefore it is attributed to anharmonic decay of high-energy phonons ($\omega_{\text{ph}} > 2\Delta$, where 2Δ is the superconducting gap) [5]. The T-dependence of τ_R is consistent with the model [5], where $\tau_R \propto 1/\Delta$ as $T \to T_c$ (dashed line is a fit using Eq.(28) of Ref.[5] with $\Delta=1.3kT_c$).

The pair-breaking dynamics is found to be two-exponential, $\Delta E_{\text{sam}}(t) = A(1-\exp(-t/\tau_a)) + B(1-\exp(-t/\tau_b))$, where τ_a and τ_b are the two rise-times, and A:B = 1:1 at low F. While the shorter time, τ_a, is resolution limited (~ 1 ps) at all fluences, $\tau_b > 10$ ps at the lowest intensities measured and is inversely proportional to F - see Fig.3b. We argue, that the peculiar cascade-like pair-breaking dynamics originates from the two-gap nature of MgB$_2$. Here τ_a corresponds to the initial intra-band pair-breaking, while τ_b originates from inter-band thermalization, and is proportional to the quasiparticle density, consistent with the intensity and temperature dependence data.

In conclusion, we presented the first femtosecond studies of pair-breaking and superconducting state recovery dynamics in MgB$_2$, with a focus on the early time-scale dynamics, governed by pair-breaking processes. The data
suggest that in the superconducting state two distinct gaps open on two Fermi surfaces leading to a peculiar cascade in the pair-breaking dynamics.